福建省宁德市博雅培文学校2023-2024学年高一6月月考数学试题.rar

收藏

压缩包目录 预览区
  • 全部
    • 福建省宁德市博雅培文学校2023-2024学年高一6月月考数学试题
      • 福建省宁德市博雅培文学校2023-2024学年高一6月月考数学试题.pdf--点击预览
      • 高一月考数学答题卡.pdf--点击预览
      • 高一月考数学解析版202406.docx--点击预览
请点击导航文件预览
编号:7669849    类型:共享资源    大小:1.66MB    格式:RAR    上传时间:2024-06-24
2
文币
资源描述:
宁德市博雅培文学校高中部宁德市博雅培文学校高中部 20242024 年春年春 6 6 月月考月月考高一数学试题高一数学试题一、单选题:一、单选题:1.在复平面内,复数z对应的点的坐标是(1,2),则 iz为()A.12iB2iC.12iD2i2.如图所示,OABC为四边形OABC的斜二测直观图,则原平面图形OABC是()A直角梯形B等腰梯形C非直角且非等腰的梯形D不可能是梯形3.在ABC中,cosA21cosB2,则ABC一定是()A.等腰三角形B直角三角形C.等腰直角三角形D无法确定4.为了解某中学对新冠疫情防控知识的宣传情况,增强学生日常防控意识,现从该校随机抽取 30 名学生参加防控知识测试,得分(10 分制)如图所示,以下结论正确的是()A这 30 名学生测试得分的中位数为 6B这 30 名学生测试得分的众数与中位数相等C这 30 名学生测试得分的平均数比中位数小D从这 30 名学生的测试得分可预测该校学生对疫情防控的知识掌握不够,建议学校加强学生疫情防控知识的学习,增强学生日常防控意识5.把语文、数学、英语三本学习书随机地分给甲、乙、丙三位同学,每人一本,则事件:“甲分得语文书”,事件:“乙分得数学书”,事件:“丙分得英语书”,则下列说法正确的是()A.与是不可能事件B.+是必然事件C.与不是互斥事件D.与既是互斥事件也是对立事件6.在如图所示的三棱锥ABCD中,AB平面BCD,BCBD,ABBCBD2E,F分别是BC,AD的中点,则直线AE与CF所成角的余弦值为()A2 3015B2 3015C3015D30157已知P是边长为 2 的正六边形ABCDEF内的一点,则AP AB 的取值范围是()A(2,6)B(6,2)C(2,4)D(4,6)8.如图所示,沿着等腰直角三角形ABC斜边上的高BD将三角形ABD折起,使点A到达点A的位置,且ADC45,则直线AB与平面BCD所成的角为()A30B45C60D90二、多选题:二、多选题:9.下列命题正确的是()A.随机事件的概率是频率的稳定值,频率是概率的近似值B.抛掷骰子 100 次,得点数是 1 的结果是 18 次,则出现 1 点的频率是950C.有一批产品,其次品率为 0.05,若从中任取 200 件产品,则一定有 190 件正品,10 件次品D.抛掷一枚质地均匀的硬币 100 次,有 51 次出现了正面,则可得抛掷一次该硬币出现正面的概率是 0.5110.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则下列结论正确的有()AAF34AB14ADBAFCF12ABC.12ABADCEDAF34AB12AD#QQABCQaAggCoAJJAAAgCUwEyCEKQkBECAQgOQBAAIAAAgQNABCA=#11.在九章算术商功中,把四个面都是直角三角形的四面体称为鳖臑若从鳖臑的六条棱中任取两条棱,则它们互相垂直的概率是1P;若从鳖臑的六条棱和四个面中取一条棱和一个面(要求棱不在面上),则它们互相垂直的概率是2P;若从鳖臑的四个面中任取两个面,则它们互相垂直的概率是3P 则1P,2P,3P的值分别是()A13,16,12B13,16,16C16,12,13D13,12,12三、填空题:三、填空题:12.已知一组数据128,x xxL的平均数为 4,方差为 3,若另一组数据12kx,282,2kxkxL的平均数为 10,则该组数据的方差为_13.已知正四面体ABCD的表面积为2 3,且A、B、C,D四点都在球O的球面上,则球O的体积为14.欧拉公式eixcosxisinx(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”,根据欧拉公式可知,若e2 0194i 表示复数z,则|z|_.四、解答题:四、解答题:15某医院为促进行风建设,拟对医院的服务质量进行量化考核,每个患者就医后可以对医院进行打分,最高分为 100 分上个月该医院对 100 名患者进行了回访调查,将他们按所打分数分成以下几组:第一组0,20),第二组20,40),第三组40,60),第四组60,80),第五组80,100,得到频率分布直方图,如图所示(1)求所打分数不低于 60 分的患者人数;(2)估计所打分数的众数,中位数(精确到 001),平均数;(3)该医院在第二、三组患者中按分层抽样的方法抽取 6 名患者进行深入调查,之后将从这 6 人中随机抽取 2人聘为医院行风监督员,求行风监督员来自不同组的概率16.在ABC 中,内角 A,B,C 的对边分别为 a,b,c,请在2224 33ABCacbS;cos3 sinaaBbA;2coscoscaBbA这三个条件中任意选择一个,完成下列问题:(1)求B 的大小;(2)若2b,求ABC 面积的取值范围17.在ABC中,角A,B,C的对边分别为a,b,c,向量 m(cos(AB),sin(AB),n(cosB,sinB),且 mn35.(1)求 sinA的值;(2)若a4 2,b5,求角B的大小及向量BA 在BC 方向上的投影18如图,正三棱柱111ABCABC的所有棱长都为 2,D为CC1的中点(1)求证:AB1平面A1BD;(2)求直线A1C1与平面A1BD所成角的正弦值;(3)求平面A1BD与平面A1DC1的夹角的正弦值19.如图所示,有一生态农庄的平面图是一个半圆形,其中直径长为 2 km,C,D两点在半圆弧上满足ADBC,设COB,现要在此农庄铺设一条观光通道,观光通道由AB,BC,CD和DA组成(1)若6,求观光通道l的长度;(2)用表示观光通道的长l,并求观光通道l的最大值#QQABCQaAggCoAJJAAAgCUwEyCEKQkBECAQgOQBAAIAAAgQNABCA=#宁德市博雅培文学校宁德市博雅培文学校 2024 年春期高二数学年春期高二数学期中模拟考试(2)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效15.16.第第 I I 卷卷 单项单项选择题选择题5ABCD6ABCD7ABCD8ABCD1ABCD2ABCD3ABCD4ABCD9ABCD10ABCD11ABCD12、_13、_14、_第第 I I 卷卷 多项多项选择选择题题第第 I II I 卷卷填空题姓名:_准考证号:贴条形码区考生禁填:缺考标记违纪标记以上标志由监考人员用 2B 铅铅笔笔填涂选择题填涂样例:正确填涂错误填涂1答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。2选择题必须用 2B 铅笔填涂;非选择题必须用 0.5 mm 黑色签字笔答题,不得用铅笔或圆珠笔答题;字体工整、笔迹清晰。3请按题号顺序在各题目的答题区域内作答,超出区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠、不要弄破。注意事项注意事项#QQABCQaAggCoAJJAAAgCUwEyCEKQkBECAQgOQBAAIAAAgQNABCA=#请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效17.18.19.#QQABCQaAggCoAJJAAAgCUwEyCEKQkBECAQgOQBAAIAAAgQNABCA=#宁德市博雅培文学校高中部 2024 年春 6 月月考 高一数学(解析版)宁德市博雅培文学校高中部 2024 年春 6 月月考 高一数学(解析版)一、单选题:一、单选题:1.在复平面内,复数z对应的点的坐标是(1,2),则 iz为()A.12i B2iC.12i D2i答案:由题意,得z12i,izi2.故选 B.2.如图所示,OABC为四边形OABC的斜二测直观图,则原平面图形OABC是()A直角梯形 B等腰梯形 C非直角且非等腰的梯形 D不可能是梯形答案:A3.在ABC中,cosA21cos B2,则ABC一定是()A.等腰三角形 B直角三角形C.等腰直角三角形 D无法确定【解析】(1)由已知,得 cos2A21cos B2,2cos2A21cos B,cos Acos B.又 0A,B,AB,ABC为等腰三角形,故选 A.4.为了解某中学对新冠疫情防控知识的宣传情况,增强学生日常防控意识,现从该校随机抽取 30 名学生参加防控知识测试,得分(10 分制)如图所示,以下结论正确的是()A这 30 名学生测试得分的中位数为 6B这 30 名学生测试得分的众数与中位数相等C这 30 名学生测试得分的平均数比中位数小D从这 30 名学生的测试得分可预测该校学生对疫情防控的知识掌握不够,建议学校加强学生疫情防控知识的学习,增强学生日常防控意识【答案】D【解析】对于 A,这 30 名学生测试得分的中位数为565.52,故 A 错误;对于 B,这 30 名学生测试得分的众数为 5,故 B 错误;对于 C,这 30 名学生测试得分的平均数为6 12503621 16 18201795.53030,故 C 错误;对于 D,因为抽取的 30 名学生测试得分普遍偏低,所以预测该校学生对疫情防控的知识掌握不够,建议学校加强学生疫情防控知识的学习,增强学生日常防控意识,故 D 正确,故选 D5.把语文、数学、英语三本学习书随机地分给甲、乙、丙三位同学,每人一本,则事件A:“甲分得语文书”,事件B:“乙分得数学书”,事件C:“丙分得英语书”,则下列说法正确的是()A.A与B是不可能事件B.A+B+C是必然事件C.A与B不是互斥事件D.B与C既是互斥事件也是对立事件【解析】【解析】事件A:“甲分得语文书”,事件B:“乙分得数学书”,事件C:“丙分得英语书”,A和B都是随机事件,A+B+C不是必然事件,故选项A和选项B都错;因为甲分得语文书的同时乙可以分得数学书,故A与B不是互斥事件,同理B和C不是互斥事件,故C对,D错故选C6.在如图所示的三棱锥ABCD中,AB平面BCD,BCBD,ABBCBD2E,F分别是BC,AD的中点,则直线AE与CF所成角的余弦值为()A23015 B23015 C3015 D3015答案:选 B.7已知P是边长为 2 的正六边形ABCDEF内的一点,则AP AB 的取值范围是()A(2,6)B(6,2)C(2,4)D(4,6)解析:选 A法一:如图,取A为坐标原点,AB所在直线为x轴建立平面直角坐标系,则A(0,0),B(2,0),C(3,3),F(1,3)设P(x,y),则AP(x,y),AB(2,0),且1x3.所以AP AB(x,y)(2,0)2x(2,6)故选 A.法二:AP AB|AP|AB|cosPAB2|AP|cosPAB,又|AP|cosPAB表示AP 在AB 方向上的投影,所以结合图形可知,当P与C重合时投影最大,当P与F重合时投影最小又AC AB 232cos 306,AF AB 22cos 1202,故当点P在正六边形ABCDEF内部运动时,AP AB(2,6)故选 A.8.如图所示,沿着等腰直角三角形ABC斜边上的高BD将三角形ABD折起,使点A到达点A的位置,且ADC45,则直线AB与平面BCD所成的角为()A30 B45 C60 D90【答案】A【解析】因为BD为等腰直角三角形ABC斜边上的高,所以BDAD,BDCD,又ADCDD,所以BD平面ACD.过点A作AECD于点E,则BDAE,所以AE平面BCD,连接BE,则ABE就是直线AB与平面BCD所成的角.设ABBC2,则在直角三角形ADE中,AD2,ADE45,所以AE1,又AB2,AEBE,所以ABE30,所以直线AB与平面BCD所成的角为 30.故选 A.二、多选题:二、多选题:9.下列命题正确的是()A.随机事件A的概率是频率的稳定值,频率是概率的近似值B.抛掷骰子100次,得点数是1的结果是18次,则出现1点的频率是950C.有一批产品,其次品率为0.05,若从中任取200件产品,则一定有190件正品,10件次品D.抛掷一枚质地均匀的硬币100次,有51次出现了正面,则可得抛掷一次该硬币出现正面的概率是0.51【解析】【解析】对于A:随机事件A的概率是频率的稳定值,频率是概率的近似值,故A正确;对于B:抛掷骰子100次,得点数是1的结果是18次,则出现1点的频率是18100=950,故B正确;对于C:有一批产品,其次品率为0.05,若从中任取200件产品,则不一定抽取到190件正品和10件次品,故C错误;对于D:抛掷一枚质地均匀的硬币100次,有51次出现了正面,则可得抛掷一次该硬币出现正面的频率是0.51,故D错误;故答案选:AB10.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则下列结论正确的有()AAF 34AB 14AD BAF CF 12AB B12AB AD CE DAF 34AB 12AD【答案】BD【解析】根据题意得AF 12(AC AE),又AC AB AD,AE 12AB,所以AF 12(AB AD 12AB)34AB 12AD,故 A 错误,D 正确,而AF CF AF FE AE 12AB,故 B 正确,又12AB AD AE AD EB BC EC EC,故 C 不正确,故选 BD.11.在九章算术商功中,把四个面都是直角三角形的四面体称为鳖臑若从鳖臑的六条棱中任取两条棱,则它们互相垂直的概率是1P;若从鳖臑的六条棱和四个面中取一条棱和一个面(要求棱不在面上),则它们互相垂直的概率是2P;若从鳖臑的四个面中任取两个面,则它们互相垂直的概率是3P 则1P,2P,3P的值分别是()A13,16,12B13,16,16C16,12,13D13,12,12【答案】A【解析】如图所示,连接长方体的四个顶点 A,B,C,D,可得鳖臑 ABCD(1)从鳖臑 ABCD 的六条棱中任取两条,有2615C 种取法,其中互相垂直的取法有 5 种:ABBC,ABBD,ABCD,ACCD,BCCD,所以151153P(2)从鳖臑 ABCD 的六条棱和四个面中取一条棱和一个面(要求棱不在面上),有4 312 种取法,它们互相垂直的取法有 2 种:AB 平面 BCD,DC 平面 ABC,所以221126P(3)从鳖臑 ABCD 的四个面中任取两个面,有246C 种取法,它们互相垂直的取法有 3 种:平面ABC 平面 BCD,平面ABC 平面 ACD,平面BCD 平面 ABD,所以33162P,故选 A三、填空题:三、填空题:12.已知一组数据128,x xxL的平均数为 4,方差为 3,若另一组数据12kx,282,2kxkxL的平均数为10,则该组数据的方差为_【答案】12【解析】由题意,原式数据的平均数和方程分别为:22212812814444,388xxxxxxxsLL,则新数据的平均数1282222421028kxkxkxxkxkkL,于是新数据的方差 22212822422422428kxkkxkkxksL22221284444 3128kxxx L,故答案为 1213.已知正四面体ABCD的表面积为2 3,且A、B、C,D四点都在球O的球面上,则球O的体积为 【答案】32【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a,所以该正四面体的表面积为2221432 322aSaaa,所以2a,又正方体的面对角线可构成正四面体,若正四面体棱长为2,可得正方体的棱长为 1,所以正方体的外接球即为该正四面体的外接球,所以外接球的直径为3,半径为32,所以球O的体积为3433322,14.欧拉公式eixcos xisin x(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”,根据欧拉公式可知,若e2 0194i 表示复数z,则|z|_.【答案】1【解析】由题意e2 0194icos2 0194isin2 0194cos34isin342222i,所以|z|12121.四、解答题:四、解答题:15某医院为促进行风建设,拟对医院的服务质量进行量化考核,每个患者就医后可以对医院进行打分,最高分为 100 分上个月该医院对 100 名患者进行了回访调查,将他们按所打分数分成以下几组:第一组0,20),第二组20,40),第三组40,60),第四组60,80),第五组80,100,得到频率分布直方图,如图所示(1)求所打分数不低于 60 分的患者人数;(2)估计所打分数的众数,中位数(精确到 001),平均数;(3)该医院在第二、三组患者中按分层抽样的方法抽取 6 名患者进行深入调查,之后将从这 6 人中随机抽取 2人聘为医院行风监督员,求行风监督员来自不同组的概率【答案】(1)65;(2)70,68.57,65;(3)815【解析】(1)由直方图知,所打分值60,100的频率为0.0175 200.0150 200.65,人数为100 0.6565(人),答:所打分数不低于 60 分的患者的人数为65人(2)众数是频率分布直方图中最高矩形的底边中点的横坐标,故众数是 70;中位数是把频率分布直方图分成两个面积相等部分的平行于 Y 轴的直线横坐标,第一个矩形的面积是50.0025 2000.;第二个矩形的面积是0.005 200.1;第三个矩形的面积是0.01 200.2;第四个矩形的面积是0.0175 200.35,故中位数出现在第四个矩形,且设中位数为 x,0.15608.570.0175x,故中位数为68.57;平均数是频率分布直方图每组数值的中间值乘以频率后相加,即010 0.0025 2030 0.005 2050 0.01 2070 0.0175 2 0.0150 209065(3)由直方图知,第二三组的频率分别为 01 和 02,则第二三组人数分别为 10 人和 20 人,所以根据分层抽样的方法,抽出的 6 人中,第二组和第三组的人数之比为 1:2,则第二组有 2 人,记为,A B;第三组有 4 人,记为a b c d,从中随机抽取 2 人的所有情况如下:,AB Aa Ab Ac Ad Ba Bb Bc Bd ab ac ad bc bd cd共 15 种,其中,两人来自不同组的情况有,Aa Ab Ac Ad Ba Bb Bc Bd共 8 种,两人来自不同组的概率为815,所以行风监督员来自不同组的概率为81516.在ABC 中,内角 A,B,C 的对边分别为 a,b,c,请在2224 33ABCacbS;cos3 sinaaBbA;2coscoscaBbA这三个条件中任意选择一个,完成下列问题:(1)求B 的大小;(2)若2b,求ABC 面积的取值范围【答案】条件选择见解析;(1)3B;(2)0,3【解析】(1)若选,2224 33ABCacbS,则4 312cossin32acBacB,tan3B,0,B,则3B若选,由正弦定理sinsincos3sinsinAABBA,又sin0A,3sincos2(sincoscossin)166BBBB,1sin62B且0,B,即66B,则3B若选,由正弦定理(2sinsin)cossincosCABBA,整理得2sincossincossincossin()sinCBABBAABC,又sin0C,1cos2B,即3B(2)由题设知:2222cos4acacBb,又3B,224acac,又222acac,4ac,由113sinsin32234SacBacac,当且仅当2ac时取等号,ABC面积的范围为0,317.在ABC中,角A,B,C的对边分别为a,b,c,向量 m(cos(AB),sin(AB),n(cos B,sin B),且 mn35.(1)求 sin A的值;(2)若a42,b5,求角B的大小及向量BA 在BC 方向上的投影解(1)由 mn35,得 cos(AB)cos Bsin(AB)sin B35,所以 cos A35.因为 0Ab,所以AB,且B是ABC一内角,则B4.由余弦定理得(42)252c225c(35),解得c1(舍去负值),故向量BA 在BC 方向上的投影为|BA|cos Bccos B12222.18如图,正三棱柱111ABCABC的所有棱长都为 2,D为CC1的中点(1)求证:AB1平面A1BD;(2)求直线A1C1与平面A1BD所成角的正弦值;(3)求平面A1BD与平面A1DC1的夹角的正弦值【答案】(1)证明见解析;(2)24;(3)104【解析】(1)证明:如图所示:设AB1A1B=O,连接AD,B1D,OD,因为正三棱柱ABCA1B1C1的所有棱长都为 2,D为CC1的中点,所以221215ADB D,因为四边形AA1B1B为正方形,所以AB1A1B,O为AB1中点,所以ODAB1,又因为A1BOD=O,所以AB1平面A1BD(2)延长AC和A1D,交于E,连接OE,由(1)知AO平面A1BD,所以AEO为直线AE与平面A1BD所成角,其正弦值为24AOAE,因为A1C1AE,所以直线A1C1与平面A1BD所成角的正弦值为24(3)过A作AFA1D于F,连接OF,由(1)知AO平面A1BD,所以OFA1D,于是AFO为平面A1BD与平面ADA1的夹角的平面角,又因为平面A1BD与平面ADA1的夹角和平面A1BD与平面A1DC1的夹角互补,所以平面A1BD与平面A1DC1的夹角的正弦值为 sinAFO,因为2OA,由等面积知45AF,所以10sin4AOAFOAF,所以平面A1BD与平面A1DC1的夹角的正弦值为10419.如图所示,有一生态农庄的平面图是一个半圆形,其中直径长为 2 km,C,D两点在半圆弧上满足ADBC,设COB,现要在此农庄铺设一条观光通道,观光通道由AB,BC,CD和DA组成(1)若6,求观光通道l的长度;(2)用表示观光通道的长l,并求观光通道l的最大值【答案】(1)观光通道长(2362)km;(2)当3时,观光通道长l的最大值为 5 km.【解析】(1)因为6,所以OCDODC6,在OCD中,利用余弦定理可得CD211211cos233,所以CD3.同理BCAD23622.所以观光通道长lABBCCDDA2362.故6时,观光通道l的长度为(2362)km.(2)如图所示,作OEBC,垂足为E,在直角三角形OBE中,BEOBsin2sin2,则有BCAD2sin2.同理作OFCD,垂足为F,CFOCcos cos,即CD2cos,从而有:l24sin22cos 4sin224sin244(sin212)2 5,(0,2),所以当3时,l取最大值 5.故观光通道长l的最大值为 5 km.
展开阅读全文
【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《福建省宁德市博雅培文学校2023-2024学年高一6月月考数学试题.rar》由用户(QXX)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
文档定制广告
关 键 词:
福建省 宁德市 博雅 文学 学年 月月 数学试题
提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:福建省宁德市博雅培文学校2023-2024学年高一6月月考数学试题.rar
链接地址:https://www.163wenku.com/p-7669849.html

Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


侵权投诉QQ:3464097650  资料上传QQ:3464097650
   


【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。




163文库